Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta ; 259(5): 122, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619628

RESUMO

MAIN CONCLUSION: Overexpression of BnaC02.TPS8 increased low N and high sucrose-induced anthocyanin accumulation. Anthocyanin plays a crucial role in safeguarding photosynthetic tissues against high light, UV radiation, and oxidative stress. Their accumulation is triggered by low nitrogen (N) stress and elevated sucrose levels in Arabidopsis. Trehalose-6-phosphate (T6P) serves as a pivotal signaling molecule, sensing sucrose availability, and carbon (C) metabolism. However, the mechanisms governing the regulation of T6P synthase (TPS) genes responsible for anthocyanin accumulation under conditions of low N and high sucrose remain elusive. In a previous study, we demonstrated the positive impact of a cytoplasm-localized class II TPS protein 'BnaC02.TPS8' on photosynthesis and seed yield improvement in Brassica napus. The present research delves into the biological role of BnaC02.TPS8 in response to low N and high sucrose. Ectopic overexpression of BnaC02.TPS8 in Arabidopsis seedlings resulted in elevated shoot T6P levels under N-sufficient conditions, as well as an increased carbon-to-nitrogen (C/N) ratio, sucrose accumulation, and starch storage under low N conditions. Overexpression of BnaC02.TPS8 in Arabidopsis heightened sensitivity to low N stress and high sucrose levels, accompanied by increased anthocyanin accumulation and upregulation of genes involved in flavonoid biosynthesis and regulation. Metabolic profiling revealed increased levels of intermediate products of carbon metabolism, as well as anthocyanin and flavonoid derivatives in BnaC02.TPS8-overexpressing Arabidopsis plants under low N conditions. Furthermore, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) analyses demonstrated that BnaC02.TPS8 interacts with both BnaC08.TPS9 and BnaA01.TPS10. These findings contribute to our understanding of how TPS8-mediated anthocyanin accumulation is modulated under low N and high sucrose conditions.


Assuntos
Arabidopsis , Brassica napus , Fosfatos Açúcares , Trealose , Antocianinas , Arabidopsis/genética , Brassica napus/genética , Carbono , Flavonoides , Nitrogênio , Trealose/análogos & derivados , Técnicas do Sistema de Duplo-Híbrido
2.
Physiol Plant ; 176(2): e14247, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38499953

RESUMO

Oilseed rape (Brassica napus) is one of the most important oil crops in the world and shows sensitivity to low phosphorus (P) availability. In many soils, organic P (Po) is the main component of the soil P pool. Po must be mineralised to Pi through phosphatases, and then taken up by plants. However, the relationship between root-secreted acid phosphatases (APase) and root morphology traits, two important P-acquisition strategies in response to P deficiency, is unclear among B. napus genotypes. This study aimed to understand their relationship and how they affect P acquisition, which is crucial for the sustainable utilisation of agricultural P resources. This study showed significant genotypic variations in root-secreted APase activity per unit root fresh weight (SAP) and total root-secreted APase activity per plant (total SAP) among 350 B. napus genotypes. Seed yield was positively correlated with total SAP but not significantly correlated with SAP. Six root traits of 18 B. napus genotypes with contrasting root biomass were compared under normal Pi, low Pi and Po. Genotypes with longer total root length (TRL) reduced SAP, but those with shorter TRL increased SAP under P deficiency. Additionally, TRL was important in P-acquisition under three P treatments, and total SAP was also important in P-acquisition under Po treatment. In conclusion, trade-offs existed between the two P-acquisition strategies among B. napus genotypes under P-deficient conditions. Total SAP was an important root trait under Po conditions. These results might help to breed B. napus with greater P-acquisition ability under low P availability conditions.


Assuntos
Brassica napus , Fósforo , Brassica napus/genética , Fosfatase Ácida/genética , Fenótipo , Genótipo , Solo
3.
Plant J ; 118(2): 437-456, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38198218

RESUMO

Trehalose-6-phosphate (T6P) functions as a vital proxy for assessing carbohydrate status in plants. While class II T6P synthases (TPS) do not exhibit TPS activity, they are believed to play pivotal regulatory roles in trehalose metabolism. However, their precise functions in carbon metabolism and crop yield have remained largely unknown. Here, BnaC02.TPS8, a class II TPS gene, is shown to be specifically expressed in mature leaves and the developing pod walls of Brassica napus. Overexpression of BnaC02.TPS8 increased photosynthesis and the accumulation of sugars, starch, and biomass compared to wild type. Metabolomic analysis of BnaC02.TPS8 overexpressing lines and CRISPR/Cas9 mutants indicated that BnaC02.TPS8 enhanced the partitioning of photoassimilate into starch and sucrose, as opposed to glycolytic intermediates and organic acids, which might be associated with TPS activity. Furthermore, the overexpression of BnaC02.TPS8 not only increased seed yield but also enhanced seed oil accumulation and improved the oil fatty acid composition in B. napus under both high nitrogen (N) and low N conditions in the field. These results highlight the role of class II TPS in impacting photosynthesis and seed yield of B. napus, and BnaC02.TPS8 emerges as a promising target for improving B. napus seed yield.


Assuntos
Brassica napus , Glucosiltransferases , Brassica napus/genética , Brassica napus/metabolismo , Fotossíntese , Sementes/genética , Sementes/metabolismo , Amido/metabolismo
4.
Mol Breed ; 43(8): 63, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37521313

RESUMO

Optimal root system architecture (RSA) is essential for vigorous growth and yield in crops. Plants have evolved adaptive mechanisms in response to low phosphorus (LP) stress, and one of those is changes in RSA. Here, more than five million single-nucleotide polymorphisms (SNPs) obtained from whole-genome re-sequencing data (WGR) of an association panel of 370 oilseed rape (Brassica napus L.) were used to conduct a genome-wide association study (GWAS) of RSA traits of the panel at LP in "pouch and wick" system. Fifty-two SNPs were forcefully associated with lateral root length (LRL), total root length (TRL), lateral root density (LRD), lateral root number (LRN), mean lateral root length (MLRL), and root dry weight (RDW) at LP. There were significant correlations between phenotypic variation and the number of favorable alleles of the associated loci on chromosomes A06 (chrA06_20030601), C03 (chrC03_3535483), and C07 (chrC07_42348561), respectively. Three candidate genes (BnaA06g29270D, BnaC03g07130D, and BnaC07g43230D) were detected by combining transcriptome, candidate gene association analysis, and haplotype analysis. Cultivar carrying "CCGC" at BnaA06g29270DHap1, "CAAT" at BnaC03g07130DHap1, and "ATC" at BnaC07g43230DHap1 had greater LRL, LRN, and RDW than lines carrying other haplotypes at LP supply. The RSA of a cultivar harboring the three favorable haplotypes was further confirmed by solution culture experiments. These findings define exquisite insights into genetic architectures underlying B. napus RSA at LP and provide valuable gene resources for root breeding. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01411-2.

5.
Chemosphere ; 337: 139392, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37419159

RESUMO

Optimal phosphorus (P) managements can improve the crop yield without reducing soil P supply capacity over the long term. In this study, the rapeseed-rice rotation experiments were conducted to evaluate the effect of five optimal P fertilizer managements, including the addition of RA (rooting agents), PSB (phosphate solubilizing bacteria), CMP (calcium and magnesium phosphate fertilizer), DP1 (starter P) and DP2 (foliar fertilizer) with the reduction of 40% (in the 1st rapeseed season) and 75% (in the 2nd rapeseed season) P fertilizers of farmers' fertilizer practice (FFP) on crop productivity and soil P fertility in low and high P fertility soils. Seed yield, P partial factor productivity, and P recovery efficiency of both cultivars, Shengguang168 (SG168) and Zhongshuang 11 (ZS11), were significantly improved under optimal P managements, and the increase of them in low P fertility soil was more than that in high P fertility soil. Total P surplus was lower under optimal P managements than under FFP in both P fertility soils. The increasing amount of crop yields under optimal P managements for both cultivars was equivalent to that of 16.0-38.3 kg P2O5 hm-2 of P fertilizer application, and the order of the optimal P managements was as follows: RA > PSB > CMP > DP1 > DP2. In addition, the grain yield of rotated rice cultivar Longliangyou1212 (LLY1212) without P supply was not reduced in both fertility soils. Compared with low P fertility soil, yields of SG168, ZS11 and LLY1212 in high P fertility soil increased by 28.1%-71.7%, 28.3%-78.9% and 26.2%-47.2% at the same treatment, respectively. In summary, optimal P managements in the rapeseed season could stabilize the crop yield, promote P use efficiency and the capacity of soil P supply in the rapeseed-rice rotation, especially in low P fertility soil.


Assuntos
Brassica napus , Brassica rapa , Oryza , Solo , Fósforo , Fertilizantes , Fertilidade , Agricultura , Nitrogênio/análise
6.
Mol Breed ; 43(7): 53, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37333997

RESUMO

Oilseed rape (Brassica napus L.; B. napus) is an important oil crop worldwide. However, the genetic mechanisms of B. napus adaptations to low phosphate (P) stress are largely unknown. In this study, a genome-wide association study (GWAS) identified 68 SNPs significantly associated with seed yield (SY) under low P (LP) availability, and 7 SNPs significantly associated with phosphorus efficiency coefficient (PEC) in two trials. Among these SNPs, two, chrC07__39807169 and chrC09__14194798, were co-detected in two trials, and BnaC07.ARF9 and BnaC09.PHT1;2 were identified as candidate genes of them, respectively, by combining GWAS with quantitative reverse-transcription PCR (qRT-PCR). There were significant differences in the gene expression level of BnaC07.ARF9 and BnaC09.PHT1;2 between P-efficient and -inefficiency varieties at LP. SY_LP had a significant positive correlation with the gene expression level of both BnaC07.ARF9 and BnaC09.PHT1;2. BnaC07.ARF9 and BnaA01.PHR1 could directly bind the promoters of BnaA01.PHR1 and BnaC09.PHT1;2, respectively. Selective sweep analysis was conducted between ancient and derived B. napus, and detected 1280 putative selective signals. Within the selected region, a large number of genes related to P uptake, transport, and utilization were detected, such as purple acid phosphatase (PAP) family genes and phosphate transporter (PHT) family genes. These findings provide novel insights into the molecular targets for breeding P efficiency varieties in B. napus. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01399-9.

7.
Ann Bot ; 131(4): 569-583, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36181516

RESUMO

BACKGROUND AND AIMS: Brassica napus is one of the most important oilseed crops worldwide. Seed yield of B. napus significantly correlates with the primary root length (PRL). The aims of this study were to identify quantitative trait loci (QTLs) for PRL in B. napus. METHODS: QTL-seq and conventional QTL mapping were jointly used to detect QTLs associated with PRL in a B. napus double haploid (DH) population derived from a cross between 'Tapidor' and 'Ningyou 7'. The identified major locus was confirmed and resolved by an association panel of B. napus and an advanced backcross population. RNA-seq analysis of two long-PRL lines (Tapidor and TN20) and two short-PRL lines (Ningyou 7 and TN77) was performed to identify differentially expressed genes in the primary root underlying the target QTLs. KEY RESULTS: A total of 20 QTLs impacting PRL in B. napus grown at a low phosphorus (P) supply were found by QTL-seq. Eight out of ten QTLs affecting PRL at a low P supply discovered by conventional QTL mapping could be detected by QTL-seq. The locus qPRL-C06 identified by QTL-seq was repeatedly detected at both an optimal P supply and a low P supply by conventional QTL mapping. This major constitutive QTL was further confirmed by regional association mapping. qPRL-C06 was delimited to a 0.77 Mb genomic region on chromosome C06 using an advanced backcross population. A total of 36 candidate genes within qPRL-C06 were identified that showed variations in coding sequences and/or exhibited significant differences in mRNA abundances in primary root between the long-PRL and short-PRL lines, including five genes involved in phytohormone biosynthesis and signaling. CONCLUSIONS: These results both demonstrate the power of the QTL-seq in rapid QTL detection for root traits and will contribute to marker-assisted selective breeding of B. napus cultivars with increased PRL.


Assuntos
Brassica napus , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Brassica napus/genética , Mapeamento Cromossômico , Fenótipo , Cromossomos , Sementes/genética
8.
Front Bioeng Biotechnol ; 10: 938520, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061427

RESUMO

Oxidative stress can induce bone tissue damage and the occurrence of multiple diseases. As a type of traditional medicine, tocopherol has been reported to have a strong antioxidant effect and contributes to osteogenic differentiation. The purpose of this study was to investigate the protective effect of tocopherol on the oxidative stress of rat bone marrow-derived mesenchymal stem cells (BMSCs) and the underlying mechanisms. By establishing an oxidative stress model in vitro, the cell counting kit-8 (CCK-8), reactive oxygen species (ROS) analysis, Western blot (WB), real-time PCR (RT-PCR), alkaline phosphatase (ALP) staining, and Alizarin Red staining (ARS) evaluated the effects of tocopherol on the cell viability, intracellular ROS levels, and osteogenic differentiation in BMSCs. In addition, ferroptosis-related markers were examined via Western blot, RT-PCR, and Mito-FerroGreen. Eventually, the PI3K/AKT/mTOR signaling pathway was explored. We found that tocopherol significantly maintained the cell viability, reduced intracellular ROS levels, upregulated the levels of anti-oxidative genes, promoted the levels of osteogenic-related proteins, and the mRNA of BMSCs stimulated by H2O2. More importantly, tocopherol inhibited ferroptosis and upregulated the phosphorylation levels of PI3K, AKT, and mTOR of BMSCs upon H2O2 stimulation. In summary, tocopherol protected BMSCs from oxidative stress damage via the inhibition of ferroptosis through the PI3K/AKT/mTOR pathway.

9.
Adv Mater ; 34(42): e2204373, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35951262

RESUMO

Recently, ferromagnetic-heterostructure spintronic terahertz (THz) emitters have been recognized as one of the most promising candidates for next-generation THz sources, owing to their peculiarities of high efficiency, high stability, low cost, ultrabroad bandwidth, controllable polarization, and high scalability. Despite the substantial efforts, they rely on external magnetic fields to initiate the spin-to-charge conversion, which hitherto greatly limits their proliferation as practical devices. Here, a unique antiferromagnetic-ferromagnetic (IrMn3 |Co20 Fe60 B20 ) heterostructure is innovated, and it is demonstrated that it can efficiently generate THz radiation without any external magnetic field. It is assigned to the exchange bias or interfacial exchange coupling effect and enhanced anisotropy. By precisely balancing the exchange bias effect and enhanced THz radiation efficiency, an optimized 5.6 nm-thick IrMn3 |Co20 Fe60 B20 |W trilayer heterostructure is successfully realized, yielding an intensity surpassing that of Pt|Co20 Fe60 B20 |W. Moreover, the intensity of THz emission is further boosted by togethering the trilayer sample and bilayer sample. Besides, the THz polarization may be flexibly controlled by rotating the sample azimuthal angle, manifesting sophisticated active THz field manipulation capability. The field-free coherent THz emission that is demonstrated here shines light on the development of spintronic THz optoelectronic devices.

10.
J Mol Endocrinol ; 69(3): 401-413, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35900382

RESUMO

Quercetin has been shown to have a wide range of beneficial effects, such as anti-inflammation, anti-oxidation and immunomodulation. The study was designed to explore the role and molecular mechanisms of quercetin on the protective effect of bone marrow-derived mesenchymal stem cells (BMSCs) under oxidative stress in vitro. BMSCs were isolated from 4-week-old male Sprague-Dawley rats. Upon H2O2 stimulation in vitro, the effects of quercetin on the proliferation, anti-oxidation and osteogenic differentiation of BMSCs were evaluated by Cell Counting Kit-8, reactive oxygen species analysis, Western blot (WB), real-time PCR (RT-PCR), alkaline phosphatase staining and alizarin red staining. Additionally, ferroptosis-related markers were examined by WB, RT-PCR and Mito-FerroGreen. Finally, PI3K/AKT/mTOR signaling pathway was explored in these processes. We found that quercetin significantly maintained BMSCs viability upon H2O2 stimulation. Quercetin upregulated protein (ALP, OPN and RUNX2) and mRNA (Alp, Opn, Ocn and Runx2) levels of osteogenic markers, downregulated ROS levels and upregulated antioxidative gene expressions (Nrf2, Cat, Sod-1 and Sod-2) compared with the H2O2 group. The ferroptosis in BMSCs was activated after H2O2 stimulation, and the phosphorylation level of PI3K, AKT and mTOR was upregulated in H2O2-stimulated BMSCs. More importantly, quercetin inhibited ferroptosis and the phosphorylation level of PI3K, AKT and mTOR were downregulated after quercetin treatment. We conclude that quercetin maintained the viability and the osteoblastic differentiation of BMSCs upon H2O2 stimulation, potentially via ferroptosis inhibition by PI3K/AKT/mTOR pathway.


Assuntos
Ferroptose , Osteogênese , Animais , Células da Medula Óssea/metabolismo , Diferenciação Celular , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/farmacologia , Peróxido de Hidrogênio/farmacologia , Masculino , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quercetina/farmacologia , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo , Serina-Treonina Quinases TOR/metabolismo
11.
J Exp Bot ; 73(14): 4753-4777, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35511123

RESUMO

Due to the non-uniform distribution of inorganic phosphate (Pi) in the soil, plants modify their root architecture to improve acquisition of this nutrient. In this study, a split-root system was employed to assess the nature of local and systemic signals that modulate root architecture of Brassica napus grown with non-uniform Pi availability. Lateral root (LR) growth was regulated systemically by non-uniform Pi distribution, by increasing the second-order LR (2°LR) density in compartments with high Pi supply but decreasing it in compartments with low Pi availability. Transcriptomic profiling identified groups of genes regulated, both locally and systemically, by Pi starvation. The number of systemically induced genes was greater than the number of genes locally induced, and included genes related to abscisic acid (ABA) and jasmonic acid (JA) signalling pathways, reactive oxygen species (ROS) metabolism, sucrose, and starch metabolism. Physiological studies confirmed the involvement of ABA, JA, sugars, and ROS in the systemic Pi starvation response. Our results reveal the mechanistic basis of local and systemic responses of B. napus to Pi starvation and provide new insights into the molecular and physiological basis of root plasticity.


Assuntos
Brassica napus , Ácido Abscísico/metabolismo , Aclimatação , Brassica napus/genética , Brassica napus/metabolismo , Regulação da Expressão Gênica de Plantas , Fosfatos/metabolismo , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
Mol Breed ; 42(10): 61, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37313016

RESUMO

Oilseed rape (Brassica napus L.) is one of the most essential oil crops. Genetic improvement of seed yield (SY) is a major aim of B. napus breeding. Several studies have been reported on the genetic mechanisms of SY of B. napus. Here, a genome-wide association study (GWAS) of SY was conducted using a panel of 403 natural accessions of B. napus, with more than five million high-quality single-nucleotide polymorphisms (SNPs). A total of 1773 significant SNPs were detected associated with SY, and 783 significant SNPs were co-located with previously reported QTLs. The lead SNPs chrA01__8920351 and chrA02__4555979 were jointly detected in Trial 2_2 and Trial 2_mean value, and in Trial 1_2 and Trial 1_mean value, respectively. Subsequently, two candidate genes of BnaA01g17200D and BnaA02g08680D were identified through combining transcriptome, candidate gene association analysis, and haplotype analysis. BnaA09g10430D detected through lead SNP chrA09__5160639 was associated with SY of B. napus. Our results provide valuable information for studying the genetic control of seed yield in B. napus and valuable genes, haplotypes, and cultivars resources for the breeding of high seed yield B. napus cultivars. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01332-6.

13.
Adv Mater ; 34(9): e2106172, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34816497

RESUMO

Future information technologies for low-dissipation quantum computation, high-speed storage, and on-chip communication applications require the development of atomically thin, ultracompact, and ultrafast spintronic devices in which information is encoded, stored, and processed using electron spin. Exploring low-dimensional magnetic materials, designing novel heterostructures, and generating and controlling ultrafast electron spin in 2D magnetism at room temperature, preferably in the unprecedented terahertz (THz) regime, is in high demand. Using THz emission spectroscopy driven by femtosecond laser pulses, optical THz spin-current bursts at room temperature in the 2D van der Waals ferromagnetic Fe3 GeTe2 (FGT) integrated with Bi2 Te3 as a topological insulator are successfully realized. The symmetry of the THz radiation is effectively controlled by the optical pumping incidence and external magnetic field directions, indicating that the THz generation mechanism is the inverse Edelstein effect contributed spin-to-charge conversion. Thickness-, temperature-, and structure-dependent nontrivial THz transients reveal that topology-enhanced interlayer exchange coupling increases the FGT Curie temperature to room temperature, which provides an effective approach for engineering THz spin-current pulses. These results contribute to the goal of all-optical generation, manipulation, and detection of ultrafast THz spin currents in room-temperature 2D magnetism, accelerating the development of atomically thin high-speed spintronic devices.

14.
Ann Bot ; 128(7): 919-930, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34490877

RESUMO

BACKGROUND AND AIMS: Oilseed rape (Brassica napus) is one of the most important oil crops worldwide. Phosphorus (P) deficiency severely decreases the plant height and branch number of B. napus. However, the genetic bases controlling plant height and branch number in B. napus under P deficiency remain largely unknown. This study aims to mine candidate genes for plant height and branch number by genome-wide association study (GWAS) and determine low-P-tolerance haplotypes. METHODS: An association panel of B. napus was grown in the field with a low P supply (P, 0 kg ha-1) and a sufficient P supply (P, 40 kg ha-1) across 2 years and plant height and branch number were investigated. More than five million single-nucleotide polymorphisms (SNPs) were used to conduct GWAS of plant height and branch number at two contrasting P supplies. KEY RESULTS: A total of 2127 SNPs were strongly associated (P < 6·25 × 10-07) with plant height and branch number at two P supplies. There was significant correlation between phenotypic variation and the number of favourable alleles of associated loci on chromosomes A10 (chrA10_821671) and C08 (chrC08_27999846), which will contribute to breeding improvement by aggregating these SNPs. BnaA10g09290D and BnaC08g26640D were identified to be associated with chrA10_821671 and chrC08_27999846, respectively. Candidate gene association analysis and haplotype analysis showed that the inbred lines carrying ATT at BnaA10g09290Hap1 and AAT at BnaC08g26640Hap1 had greater plant height than lines carrying other haplotype alleles at low P supply. CONCLUSION: Our results demonstrate the power of GWAS in identifying genes of interest in B. napus and provided insights into the genetic basis of plant height and branch number at low P supply in B. napus. Candidate genes and favourable haplotypes may facilitate marker-based breeding efforts aimed at improving P use efficiency in B. napus.


Assuntos
Brassica napus , Brassica napus/genética , Mapeamento Cromossômico , Estudo de Associação Genômica Ampla , Fósforo , Melhoramento Vegetal
15.
DNA Res ; 28(5)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34514497

RESUMO

Phytate is the storage form of phosphorus in angiosperm seeds and plays vitally important roles during seed development. However, in crop plants phytate decreases bioavailability of seed-sourced mineral elements for humans, livestock and poultry, and contributes to phosphate-related water pollution. However, there is little knowledge about this trait in oilseed rape (Brassica napus). Here, a panel of 505 diverse B. napus accessions was screened in a genome-wide association study (GWAS) using 3.28 × 106 single-nucleotide polymorphisms (SNPs). This identified 119 SNPs significantly associated with phytate concentration (PA_Conc) and phytate content (PA_Cont) and six candidate genes were identified. Of these, BnaA9.MRP5 represented the candidate gene for the significant SNP chrA09_5198034 (27 kb) for both PA_Cont and PA_Conc. Transcription of BnaA9.MRP5 in a low-phytate variety (LPA20) was significantly elevated compared with a high-phytate variety (HPA972). Association and haplotype analysis indicated that inbred lines carrying specific SNP haplotypes within BnaA9.MRP5 were associated with high- and low-phytate phenotypes. No significant differences in seed germination and seed yield were detected between low and high phytate cultivars examined. Candidate genes, favourable haplotypes and the low phytate varieties identified in this study will be useful for low-phytate breeding of B. napus.


Assuntos
Brassica napus , Brassica napus/genética , Estudo de Associação Genômica Ampla , Haplótipos , Humanos , Ácido Fítico , Melhoramento Vegetal , Sementes/genética , Transcriptoma
16.
Front Plant Sci ; 12: 697872, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394150

RESUMO

Plant root angle determines the vertical and horizontal distribution of roots in the soil layer, which further influences the acquisition of phosphorus (P) in topsoil. Large genetic variability for the lateral root angle (root angle) was observed in a linkage mapping population (BnaTNDH population) and an association panel of Brassica napus whether at a low P (LP) or at an optimal P (OP). At LP, the average root angle of both populations became smaller. Nine quantitative trait loci (QTLs) at LP and three QTLs at OP for the root angle and five QTLs for the relative root angle (RRA) were identified by the linkage mapping analysis in the BnaTNDH population. Genome-wide association studies (GWASs) revealed 11 single-nucleotide polymorphisms (SNPs) significantly associated with the root angle at LP (LPRA). The interval of a QTL for LPRA on A06 (qLPRA-A06c) overlapped with the confidence region of the leading SNP (Bn-A06-p14439400) significantly associated with LPRA. In addition, a QTL cluster on chromosome C01 associated with the root angle and the primary root length (PRL) in the "pouch and wick" high-throughput phenotyping (HTP) system, the root P concentration in the agar system, and the seed yield in the field was identified in the BnaTNDH population at LP. A total of 87 genes on A06 and 192 genes on C01 were identified within the confidence interval, and 14 genes related to auxin asymmetric redistribution and root developmental process were predicted to be candidate genes. The identification and functional analyses of these genes affecting LPRA are of benefit to the cultivar selection with optimal root system architecture (RSA) under P deficiency in Brassica napus.

17.
Huan Jing Ke Xue ; 42(3): 1581-1590, 2021 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-33742955

RESUMO

Habitat consist of the physical, chemical, and biological features that support the survival and growth of aquatic organisms, and the maintenance of biological processes and ecological function. However, habitat is spatially and temporally heterogeneous and displays spatial autocorrelation, mean that at large spatial scales, the maintenance of ecological function is complex. Consequently, it is difficult to characterize and interpret habitat characteristics, especially over large space-time scales. Although a wide variety of habitat monitoring methods have been proposed, there is still lack of well-developed methods for long-term tracking and monitoring of habitat changes at the watershed scale. Here, the characteristics of watershed habitats and the importance of monitoring in environmental management were explored based on the concept, purpose, and significance of habitat monitoring. Several monitoring methods were summarized and compared, and the key scientific limitations and requirements of habitat monitoring (e.g., spatial scale, survey scope, characteristic parameters, data acquisition, etc.) evaluated. Based on this, key aspects for successful habitat monitoring in China are proposed as baseline information for the research and application of habitat monitoring for watershed-scale ecological space management.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Organismos Aquáticos , China , Monitoramento Ambiental
18.
Sci Bull (Beijing) ; 64(17): 1215-1221, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36659601

RESUMO

Connate topological superconductor (TSC) combines topological surface states with nodeless superconductivity in a single material, achieving effective p-wave pairing without interface complication. By combining angle-resolved photoemission spectroscopy and in-situ molecular beam epitaxy, we studied the momentum-resolved superconductivity in ß-Bi2Pd film. We found that the superconducting gap of topological surface state (ΔTSS ∼ 3.8 meV) is anomalously enhanced from its bulk value (Δb ∼ 0.8 meV). The ratio of 2ΔTSS/kBTc ∼ 16.3, is substantially larger than the BCS value. By measuring ß-Bi2Pd bulk single crystal as a comparison, we clearly observed the upward-shift of chemical potential in the film. In addition, a concomitant increasing of surface weight on the topological surface state was revealed by our first principle calculation, suggesting that the Dirac-fermion-mediated parity mixing may cause this anomalous superconducting enhancement. Our results establish ß-Bi2Pd film as a unique case of connate TSCs with a highly enhanced topological superconducting gap, which may stabilize Majorana zero modes at a higher temperature.

19.
Mol Med Rep ; 18(3): 3325-3331, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30066868

RESUMO

The proliferation, migration and differentiation capacities of human periodontal ligament fibroblasts (HPDLCs) are important for the treatment of periodontal diseases. The aim of the present study was to investigate whether icariin could promote these abilities in HPDLCs, and explore the cellular mechanisms therein. The results indicated that icarrin markedly blocked apoptosis, and increased the viability and migration of HPDLCs, particularly at the concentrations of 20 and 50 µM. In addition, icariin significantly promoted HPDLCs to synthesize extracellular matrix, which was reflected by the decreased expression of matrix matalloproteinase-1 and increased expression of tissue inhibitor of metalloproteinase-1. Furthermore, the levels of bone morphogenetic protein 2, collagen I, osteoprotegerin and alkaline phosphatase were markedly elevated by icariin, indicating that icariin was able to promote the osteogenic differentiation capability of HPDLCs. Icariin also inactivated the Toll-like receptor 4 (TLR)-4/nuclear factor (NF)-κB signaling pathway by suppressing the expression levels of TLR-4 and phosphorylated p65, and by blocking p65 nuclear translocation. These results suggested that icarrin increased the survival, migration and osteoblastic differentiation of HPDLCs by inhibiting the TLR-4/NF-κB signaling pathway.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Flavonoides/farmacologia , Osteoblastos/citologia , Osteoblastos/metabolismo , Ligamento Periodontal/citologia , Apoptose/genética , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Flavonoides/química , Humanos , NF-kappa B/metabolismo , Osteogênese/efeitos dos fármacos , Fosforilação , Transporte Proteico , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
20.
Huan Jing Ke Xue ; 34(8): 2975-82, 2013 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-24191538

RESUMO

The methane emission data of paddy fields was obtained by using the static chamber and gas chromatography, and six parameters including atmospheric temperature, soil temperature at 5 cm depth, pH of soil, Eh of soil, soil moisture and ground biomass were selected as the primary influencing factors of methane emission. The support vector regression (epsilon-SVR) model was built on the optimization of structural risk minimization, and the parameters of the epsilon-SVR model were optimized using Leave-one-out Cross Validation (LOOCV). The prediction accuracy of model was evaluated by k-fold cross validation with the mean relative error (MRE) and the root mean square error (RMSE). In addition, the accuracy of the epsilon-SVR model was analyzed by comparison with the Back Propagation-Artificial Neural Network (BP-ANN) model. The results indicated that the predicted value of the epsilon-SVR model with the parameters C and epsilon optimized by LOOCV was in good agreement with the measured value, and the average MRE of test samples was 44% and the average RMSE was 16.21 mg x (m2 x h)(-1) in the process of 11-fold cross validation. Compared with the BP-ANN model, the correlation coefficient was 0.863, and all the indicators were better. It demonstrated that the 8-SVR model could be applied to the prediction of methane emission of paddy fields.


Assuntos
Metano/química , Oryza , Solo/química , Redes Neurais de Computação , Análise de Regressão , Máquina de Vetores de Suporte , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...